Page 1 of 25

Client Staffordshire Crystal Ltd. Unit 14 Pedmore Road Ind. Estate Brierly Hill West Midlands DY5 1TJ

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site	Brierly Hill
Plant	Wet Arrestor
Sampling Date	14th October 2014
Report Date	25th November 2014
Job Number	2p71962
Permit Number	PB/98 Variation 200839393

Report Prepared by: Print

MCERTS No.

MCERTS No.

Print

Graham Rowley

MM 03 148

Level 2 TE: 1,2,3,4

Report Approved by: Sign

Emily Buffam MM 04 502

Level 2 TE: 1,2,3,4

REC Environmental Monitoring Ltd 10 Broad Lane Moldgreen Huddersfield HD5 9BX

Tel: 0845 676 9303 Company Registration No 08343822

a CONCEPT LIFE SCIENCES company

Page 2 of 25

Contents

Page 1 Part 1: Executive Summary

- Page 2 Contents
- Page 3 Monitoring Objectives
- Page 3 Special Monitoring Requirements
- Page 4 Summary Of Methods
- Page 4 Summary Of Results
- Page 5 Operating Information
- Page 5 Comments On Monitoring Procedures

Page 6 Part 2: Supporting Information

Page 7 Appendix 1

- Page 8 Emission Monitoring Procedures and Instrumentation
- Page 9 Sampling Personnel
- Page 9 Equipment References
- Page 9 Subcontracted Analysis

Page 10 Appendix 2

- Page 11 Preliminary Velocity Traverse & Moisture Data
- Page 12 Total Particulate Matter Sampling Data
- Page 13 Total Particulate Matter Emission Results
- Page 14 Lead Sampling Data
- Page 15 Lead Emission Result
- Page 16 Lead Field Blank Emission Result

Page 17 Appendix 3

- Page 18 Diagram of Sampling Location
- Page 19 Generic Calculations
- Page 20 Flow Calculations
- Page 21 Concentration Calculation
- Page 22 Uncertainty Estimate Calculations Manual Techniques

Page 23 Appendix 4

- Page 24 Uncertainty Estimates:- Total Particulate Matter
- Page 25 Uncertainty Estimates:- Lead

Page 3 of 25

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Wet Arrestor	Particulates Lead

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Page 4 of 25

Summary Of Methods

Emission	Method number	Method standard
Particulate	TPM/04	BS EN 13284 - 1 : 2002
Gas velocity	TPM/01	BS EN 13284 : 2002
Water vapour	TPM/37	BS EN 14790 : 2005
Lead	TPM/06b	BS EN 14385 : 2004

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of **Staffordshire Crystal Ltd.** The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling		Emission	Authorised	Uncertainty	Detection	Mass	
Brierly Hill	Time		Result	Limit	+/-	Limit	Emission	
Wet Arrestor	Date	Start	End	mg/m ³ *	mg/m ³ *	mg/m ³ *	mg/m ³ *	g/h
Particulate	14/10/14	15:24	16:04	1.09	20	0.26	0.71	5.18
s Lead	14/10/14	14:28	15:08	0.009	5	0.003	0.001	0.044

* at reference conditions Sta	ack Gas Weight	0 °C	Without correction	n for moisture	
	29.00 Kg/kmol	101.3 kPa	Oxygen	No Correction	%

Where applicable	Oxides of nitrogen results are expressed as nitrogen dioxide TOC results are expressed as total carbon			
Throughout Report:	 * Reference conditions (see above) ** Analysis not required ND Non detectable 	Nm ³ 273 K, 101.3 kPa # - UKAS accredited only ## - Not Accredited		
	s - Subcontracted laboratory analysis	N/A Not applicable		

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Page 5 of 25

Operating Information

The tables below shows details of the operating information on each sampling date for: Wet Arrestor

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
14/10/2014	Process Extraction	Continuous	-	Glass	Water Trough	Normal operation

There are no CEMs currently installed on this process for the determinands being monitored.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required: The homogeneity test is not applicable to non-combustion processes. The homogeneity test is not applicable to duct areas less than $1m^2$.

All monitoring was performed in accordance with the relevant procedures.

Sampling could only be undertaken from the one port available and of limited points as a result of insufficient platform size and restricted access.

The particulate monitoring was within the required 95 to 115 % isokinetic rate as stated in BS EN 13284-1: 2002

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

The impinger efficiency check for lead was not performed because the measured emission was less than 30% of the emission limit value.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 6 of 25

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client	Staffordshire Crystal Ltd.
Site	Brierly Hill
Plant	Wet Arrestor
Sampling Date	14th October 2014
Report Date	25th November 2014
Job Number	2p71962
Permit Number	PB/98 Variation 200839393

Report Prepared by:	Print	Graham Rowley	
	MCERTS No.	MM 03 148	Level 2 TE: 1,2,3,4
Report Approved by:	Sign Print	EBJ Fram Emily Buffam	
	MCERTS No.	MM 04 502	Level 2 TE: 1,2,3,4

REC Environmental Monitoring Ltd 10 Broad Lane Moldgreen Huddersfield HD5 9BX

Tel: 0845 676 9303 Company Registration No 08343822

Page 7 of 25

APPENDIX 1

Page 8 of 25

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM/01 to the main procedural requirements of BS EN 13284:2002. Velocity and temperature measurements are performed using a calibrated Pitot tube, as described in BS ISO 10780:1994 and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Water vapour

Documented in-house procedure TPM/37 to the main procedural requirements of BS EN 14790:2005. A measured volume of gas is extracted from the gas stream through a moisture trapping unit. The mass gain of moisture trapped is divided by the volume of gas sampled to determine the mass concentration of water vapour. For water saturated stacks the temperature of the gas stream is measured and the water vapour concentration is determined using liquid-gas equilibrium tables. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Total particulate matter

Documented in-house procedure TPM/04 to the main procedural requirements of BS EN 13284-1:2002. Stack gases are extracted from representative sampling points at isokinetic flow rates through a sharp-edged nozzle. Particulate matter is collected on a pre-weighed filter conditioned at 180°C. Deposits upstream of the filter are also recovered and weighed. The increase of mass of the filter and mass collected upstream of the filter is divided by the volume sampled to determine the mass concentration.

Lead

Documented in-house procedure TPM/06b to the main procedural requirements of BS EN 14385:2004 - substantial metered volume of gas sampled isokinetically through a sharp edged nozzle dedicated heated probe, filter, and chilled impinger train containing appropriate hydrogen peroxide/nitric acid and sulphuric acid/potassium permanganate solutions, and subsequent Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analysis.

Page 9 of 25

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Graham Rowley	MCERTS No MM 03 148	Level 1 -	Level 2 30/11/2018	TE1 30/11/2018	TE2 31/03/2015	TE3 31/10/2019	TE4 31/03/2020
Report authorised by:	Emily Buffam	MM 04 502	-	30/06/2016	30/06/2016	31/08/2016	31/08/2016	31/08/2016
Team leader:	Graham Rowley	MM 03 148	-	30/11/2018	30/11/2018	31/03/2015	31/10/2019	31/03/2020
Technician:	Tom Clarkson	MM 02 120	31/12/2018	-	-	-	-	-

Equipment References

Equipment	Reference Number
Probe	P48
Probe Thermocouple	TP48
Stack Thermocouple	TS48
Control Box	CU13
Timer / Stopwatch	CU13/8
Barometer	WS04
Pitot	PT113
Callipers	CV17
Hot Box	HB23
Impinger Thermocouple	TV34
Sample Rate Calculation Equipment	Laptop
Balance	BL19
Weights	W35, W36

Subcontracted Analysis

REC Environmental Monitoring has, with your approval, used the following sub-contracted laboratories for the laboratory analyses referenced below:

Laboratory:	Scientific Analysis Laboratories
Parameters:	Heavy Metals - Internal method ICPMS BS EN 14385
Accreditation:	UKAS Accredited testing laboratory number 1549

Page 10 of 25

APPENDIX 2

Page 11 of 25

Date	14/10/2014	Barometric pressure	98.9
Time	13:30	Duct static pressure	-0.02
Pitot Cp	0.85	Stack Area	0.302

Stack Diameter (circular)	0.62	m

Traverse	Traverse	Depth	ΔP	Т	Angle	velocity	Traverse	Depth	ΔP	Т	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	А	5.0	2.0	16	<15	4.9	В	5.0			<15	
2	А	5.0	2.0	16	<15	4.9	В	5.0			<15	
3	А	7.3	1.5	16	<15	4.2	В	7.3			<15	
4	А	11.0	2.0	16	<15	4.9	В	11.0			<15	
5	А	15.5	2.5	16	<15	5.5	В	15.5			<15	
6	А	22.1	2.5	16	<15	5.5	В	22.1			<15	
7	А	39.9	2.0	16	<15	4.9	В	39.9			<15	
8	А	46.5	3.0	16	<15	6.0	В	46.5			<15	
9	А	51.0	2.5	16	<15	5.5	В	51.0			<15	
10	А	54.7	3.0	16	<15	6.0	В	54.7			<15	
11	А	57.0	4.0	16	<15	6.9	В	57.0			<15	
12	А	57.0	2.5	16	<15	5.5	В	57.0			<15	

Average Pitot DP	2.42	mmH₂O
Average Temperature	289.2	к
Average Velocity	5.4	m/s
Average volumetric flow rate	1.62	m ³ /s at stack conditions
Average volumetric flow rate	1.49	m ³ /s (wet STP)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

а	Angel of gas flow less than 15° with regard to duct axis			
b	No local negative flow			
С	Minimum pitot greater than 5Pa			
d	Ratio of highest to lowest local gas velocity less than 3:1			
	Minimum local gas velocity 4.2			
	Maximum local gas velocity 6.9			
	Ratio of highest to lowest local gas velocity	1.63		

Moisture Determination BS EN 14790:2005

	Volume	Temp	Pressure
	m ³	°C	mbar
Meter start	5.470	14	989
Meter end	6.188	16	989
Meter Yd	1.002		
Gas volume	0.666		

Impinger	1	2	3	4	5
Mass start (g)	679.9	726.3	754.6	583.3	947.5
Mass End (g)	680.0	728.6	755.5	584.0	951.5
Total Mass collected (g	8.0				

If water droplets are present in the gas, the water vapour content is calculated using BS EN 14790 Annex A

N/A % v/v

mm Y/N

Y/N

m³

m³ m³

Nm³

% v/v

%

Page 12 of 25

9.07

Ν

Υ CU13 6.402

7.144

0.742

0.686

2.1

101.6

Probe/Pitot ID No		P48/PT113
Pitot Calibration Factor (Cp)		0.85
Gas Calibration Factor (Y)		1.002
Barometric Pressure	kPa	98.9
Duct static Pressure	kPa	-0.02
Date		14/10/2014
Start Time	hh:min	15:24
End Time	hh:min	16:04
Sampling Duration	hh:min	00:40
	-	

	P48/PT113
	0.85
	1.002
a	98.9
a	-0.02
	14/10/2014
n	15:24
n	16:04
n	00:40

Nozzle Diameter (d)
In-stack Filtration
Leak check OK
Meter ID No
Initial Gas Meter Reading
Final Gas Meter Reading
Sampled Vol, Dry at Meter
Sampled Vol, Dry STP
Moisture content of stack gas
Isokinetic

Impinger	1	2	3	4
Initial mass (g)	678.0	679.7	565.5	947.5
Final mass (g)	676.6	682.1	566.6	957.3

Sample Point Number Line Sampling Time Pitot Reading (h) Sample Gas Temperature (Ts) Filter Temperature (Ts) Meter Temperature (Ts) Meter Temper						Temperatures		
Number hh.min (h) mm w.g (Ts) 'C (Tm) 'C (Tm) 'C (Tm) 'C (Dh) 'C 1 A 00:05 1.75 16 158 17 31.0 1 00:05 1.75 16 160 17 31.0 1 00:05 2.0 16 160 17 35.0 2 A 00:25 2.0 15 160 17 35.0 2 A 00:25 2.0 15 160 17 35.0 1 00:30 2.0 16 160 17 35.0 1 00:30 2.0 16 160 17 35.0 1 00:30 2.0 16 160 17 35.0 1 00:30 2.0 16 160 17 35.0 1 00:30 2.0 16 160 17 35.0 1 1 1 1 1 <td< td=""><td>Sample</td><td>Line</td><td>Sampling</td><td>Pitot Reading</td><td>Sample Gas</td><td>Filter</td><td>Meter</td><td>Orifice</td></td<>	Sample	Line	Sampling	Pitot Reading	Sample Gas	Filter	Meter	Orifice
hh.min mm w.g °C	Point		Time		Temperature	Temperature	Temperature	Pressure
1 A 00:00 1.75 16 158 17 31.0 00:05 1.75 16 160 17 31.0 00:10 1.75 16 160 17 31.0 00:15 2.0 16 160 17 35.0 2 A 00:20 2.0 15 160 17 35.0 2 A 00:25 2.0 15 160 17 35.0 3 00:35 2.0 16 160 17 35.0 3 00:35 2.0 16 160 17 35.0 3 00:35 2.0 16 160 17 35.0 3 00:40 4 00:40 4 00:40	Number			(h)	(Ts)		(Tm)	(Dh)
00:05 1.75 16 160 17 31.0 00:10 1.75 16 160 17 31.0 00:15 2.0 16 160 17 35.0 2 A 00:20 2.0 15 160 17 35.0 00:25 2.0 15 160 17 35.0 00:30 2.0 16 160 17 35.0 00:35 2.0 16 160 17 35.0 00:35 2.0 16 160 17 35.0 00:40 160 17 35.0 00:40 160 17 35.0 00:40 17 35.0 100:40 16 160 17 35.0 100:40 160 17 35.0 100:40			hh:min	mm w.g	°C	°C		
00:10 1.75 16 160 17 31.0 2 A 00:25 2.0 15 160 17 35.0 00:25 2.0 15 160 17 35.0 00:25 2.0 15 160 17 35.0 00:30 2.0 16 160 17 35.0 00:30 2.0 16 160 17 35.0 00:30 2.0 16 160 17 35.0 00:40 00:40 00:40 00:40 00:40 <	1	Α	00:00	1.75	16	158	17	31.0
00:15 2.0 16 160 17 35.0 2 A 00:20 2.0 15 160 17 35.0 00:25 2.0 15 160 17 35.0 00:30 2.0 16 160 17 35.0 00:35 2.0 16 160 17 35.0 00:35 2.0 16 160 17 35.0 00:35 2.0 16 160 17 35.0 00:40 1 1 1 1 1			00:05	1.75	16	160	17	31.0
2 A 00:20 2.0 15 160 17 35.0 00:25 2.0 15 160 17 35.0 00:30 2.0 16 160 17 35.0 00:35 2.0 16 160 17 35.0 00:40 0:40 16 160 17 35.0 1 0:40 16 160 17 35.0 1 1 1 1 1 1 1 1			00:10	1.75	16	160	17	31.0
00:25 2.0 15 160 17 35.0 00:30 2.0 16 160 17 35.0 00:40 00:40 10 10 10 1 1 1 10 10 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			00:15	2.0	16	160	17	35.0
00:30 2.0 16 160 17 35.0 00:35 2.0 16 160 17 35.0 00:40 1 00:40 1 1 1 1 1 1 1	2	А	00:20	2.0	15	160	17	35.0
00:35 2.0 16 160 17 35.0 00:40 00:40 1 1 1 1 1 1 00:40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			00:25	2.0	15	160	17	35.0
00:40Image: style			00:30	2.0	16	160	17	35.0
Image: series of the series			00:35	2.0	16	160	17	35.0
Image: Constraint of the second se			00:40					
Image: Constraint of the second se								
Image: Constraint of the second se								
Image: Constraint of the second se								
Image: Constraint of the second se								
Image: Constraint of the second se								
Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the								
Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the								
Image: Sector of the sector								
Image: Sector of the sector								
Image: Sector of the sector								
Image: Constraint of the second se								
Image: state stat								
Image: Sector of the sector								
Image: Second								
Image: Sector of the sector								
Image: Second								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
Averages 1.9 15.8 159.8 17.0 33.5								
100 100.0 17.0 00.0			Averages	1.9	15.8	159.8	17.0	33.5

Average velocity	4.76	m/s
Average flow rate	1.44	m³/s
Average flow rate	1.33	m³/s*

Page 13 of 25

Blank Filter \	Veight	Date of analysis	After (g)	Before (g)	Collected (g)	% of Filter
Filter No	X11379	24/10/2014	0.75280	0.75249	0.00031	Tare Weight
Washings	10401	20/10/2014	48.78087	48.78025	0.00062	0.1

Filter Weight	Test 1	Date of analysis	After (g)	Before (g)	Collected (g)	% of Filter
Filter No	X11380	24/10/2014	0.73985	0.74003	-0.00018	Tare Weight
Washings	10402	20/10/2014	47.80151	47.80101	0.00050	0.0

Sample	Hopper Or	Total weights (g)			Control Blank	Comments
Number	Filter No	After	Before	Collected	Corrected	
Blank	X11379	49.53367	49.53274	0.00093	0.00137	
Test 1	X11380	48.54136	48.54104	0.00032	0.00076	

Washings Control Blank Weight Variance	-0.00044	Acetone Residue Weight	<1ppm
--	----------	------------------------	-------

Particulate emission results	Blank	
Detection Limit	0.71	mg/m ³ *
Particulate Emission	1.96	mg/m ³ *

Particulate Emission Results	Test 1	
Detection Limit	0.71	mg/m ³ *
Particulate Emission	1.09	mg/m ³ *

Page 14 of 25

mm

Y/N

Y/N

m³

m³

m³

Nm³

% v/v

%

9.07

Ν

Υ

CU13

5.470

6.188

0.718

0.668

1.5

99.2

Probe/Pitot ID No		P48/PT113
Pitot Calibration Factor (Cp)		0.85
Probe liner material		Titanium
Gas Calibration Factor (Y)		1.002
Barometric Pressure	kPa	98.9
Duct static Pressure	kPa	-0.02
Date		14/10/2014
Start Time	hh:min	14:28
End Time	hh:min	15:08
Sampling Duration	hh:min	00:40

Impinger	1	2	3	4	5
Initial mass (g)	679.9	726.3	754.6	583.3	947.5
Final mass (g)	680.0	728.6	755.5	584.0	951.5

Nozzle Diameter (d)
In-stack Filtration
Leak check OK
Meter ID No
Initial Gas Meter Reading
Final Gas Meter Reading
Sampled Vol, Dry at Meter
Sampled Vol, Dry STP
Moisture content of stack gas
Isokinetic

					Tempe	ratures		
Sample	Line	Sampling	Pitot Reading	Sample Gas	Meter	Probe	Filter	Orifice
Point		Time		Temperature	Temperature	Temperature	Temperature	Pressure
Number			(h)	(Ts)	(Tm)			(Dh)
		hh:min	mm w.g	°C	°C	°C	°C	mm w.g
1	А	00:00	2.0	16	14	160	159	35.0
		00:05	2.0	16	14	160	159	35.0
		00:10	2.0	16	14	160	160	35.0
		00:15	2.0	16	15	160	160	35.0
2	A	00:20	1.5	16	16	160	160	26.0
		00:25	1.5	16	16	160	160	26.0
		00:30	2.0	16	16	160	159	35.0
		00:35	2.0	16	16	160	160	35.0
		00:40						
		Averages	1.9	16.0	15.1	160.0	159.6	32.8

Average velocity	4.72	m/s
Average flow rate	1.43	m³/s
Average flow rate	1.31	m³/s*

Staffordshire Crystal Ltd., Brierly Hill, Permit Number: PB/98, R/14-5715, v1 Visit 1 of 2014

Page 15 of 25

Date	14/10/2014
Start time	14:28
Finish time	15:08
Sample volume Nm ³ (dry gas)	0.668

HEAVY METALS	Impinger mass	
Impinger 1,2 & wash	250.9	g
Impinger 3 & wash	158.2	g

Measured moisture concentration	1.47	% v/v
Measured oxygen concentration	N/A	%

HEAVY METALS	Filter	Particulate	Impinger 1 & 2	Vapour phase	Impinger 3	Vapour phase	Detection	Efficiency	Total
	Analysis	Phase	Analysis	Emission	Analysis	Emission	Limit	% Trapped	Emission
	2p71962/07	Emission	2p71962/08	Impinger 1& 2	2p71962/09	Impinger 3		In impinger 3	
Units	μg	mg/m³*	µg/l	mg/m ^{3*}	µg/l	mg/m ^{3*}	mg/m ^{3*}	%	mg/m ^{3*}
Lead (Pb)	4.90	0.00723	4.80	0.00178	1.20	0.00028	0.00092	N/A	0.009288

TOTAL HEAVY METALS	Total	Detection	Total
Particulate Phase	Emission	Limits	Emission
& Vapour Phase	mg/m ^{3*}	mg/m ^{3*}	As % ELV
Total heavy metals, Pb	0.00929	0.00092	1.9

Numbers in bold indicate detection limits

Metals excluding Mercury

Laboratory	SAL			
Method Nº & Accreditation Status	ICPMS BS EN 14385 UKAS			
Date of analysis	29/10/2014			

Staffordshire Crystal Ltd., Brierly Hill, Permit Number: PB/98, R/14-5715, v1 Visit 1 of 2014

Page 16 of 25

Date	14/10/2014
Start time	14:28
Finish time	15:08
Sample volume Nm ³ (dry gas)	0.668

HEAVY METALS	Impinger mass	
Impinger 1,2 & wash	142.9	g
Impinger 3 & wash	146.7	g

Measured moisture concentration	1.47	% v/v
Measured oxygen concentration	N/A	%

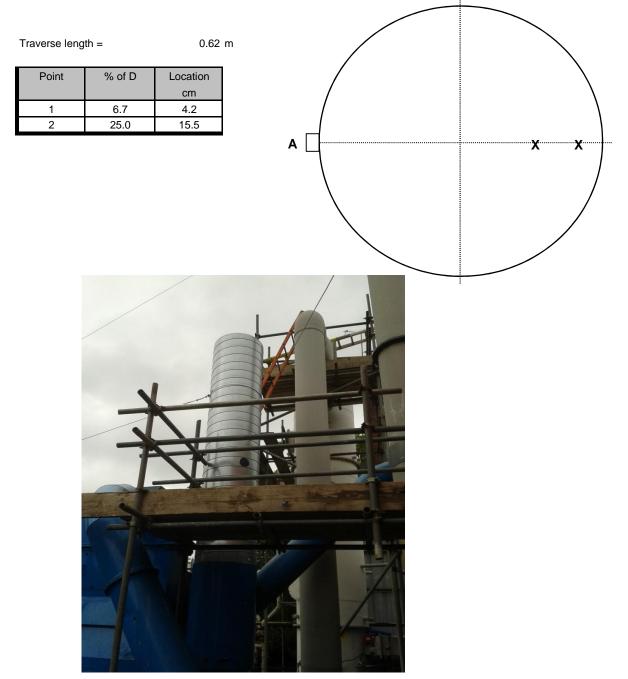
HEAVY METALS	Filter	Particulate	Impinger 1 & 2	Vapour phase	Impinger 3	Vapour phase	Detection	Efficiency	Total
	Analysis	Phase	Analysis	Emission	Analysis	Emission	Limit	% Trapped	Emission
	2p71962/04	Emission	2p71962/05	Impinger 1& 2	2p71962/06	Impinger 3		In impinger 3	
Units	μg	mg/m ^{3*}	µg/l	mg/m ^{3*}	µg/l	mg/m ^{3*}	mg/m³*	%	mg/m ^{3*}
Lead (Pb)	0.50	0.00000	0.30	0.00000	0.30	0.00000	0.00087	N/A	0.000000

TOTAL HEAVY METALS	Total	Detection	Total
Particulate phase	Emission	Limits	Emission
& Vapour phase	mg/m ^{3*}	mg/m ^{3*}	As % ELV
Total heavy metals, Pb	0.00000	0.00087	0.0

Numbers in bold indicate detection limits

Metals excluding Mercury

Laboratory	SAL			
Method Nº & Accreditation Status	ICPMS BS EN 14385 UKAS			
Date of analysis	29/10/2014			


Page 17 of 25

APPENDIX 3

Page 18 of 25

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Page 19 of 25

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi . D^2}{4}$$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC} \cdot V_{mol(std)}}{M_W}}{\frac{M_{WC} \cdot V_{mol(std)}}{M_W} + V_{m(std)}} \times 100$$

VWC (%) =Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)Vm(std) =Dry gas volume measured, corrected to standard conditions (m³)mWC =Mass of water collected in the impingers (g)Mw =Molecular weight of water, 18.01534 rounded to 18 (g/mol)Vmol(std) =Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = yd =	Dry gas meter volume at standard conditions (m ³) Gas meter calibration coefficient
(V2-V1) =	Dry gas meter volume at actual conditions (m ³)
Tm =	Actual Temperature (K)
Tstd =	Standard temperature (273 K)
pm =	Absolute pressure at the gas meter (kPa)
pstd =	Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity at the sampling nozzle}{Velocity of the stack gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Page 20 of 25

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \,\Delta \overline{p}}{p_e \,M_s}}$$

Average velocity (m/s)

v = C =velocity calculation constant = 129

Ts = Average stack temperature (K)

Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol Ms =

K= Pitot calibration coefficient

Pe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ = Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

Average velocity (m/s) v =

Stack cross-sectional area (m²) A =

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_{m} = q_{va} \frac{(100 - H_{a})}{(100 - H_{m})}$$

qm = Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m \ p_a\right)}{\left(T_a \ p_m\right)}$$

qm = Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm =Reference Temperatue (K)

Absolute gas pressure at actual conditions (kPa) pa =

Reference pressure (kPa) pm =

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm = Corrected volume flowrate (m³/s) qva = Volume flow rate at actual conditions (m³/s) O2,m = Actual oxygen concentration (%)

O2, ref = Reference oxygen concentration (%)

Page 21 of 25

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration

m = Mass of substane

V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration

q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm =Concentration at reference conditionsca =Actual concentrationO2, ref =Reference oxygen (%)O2, a=Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet =Concentration wet gascdry =Concentration dry gasHa =Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³ From reference calculations (taken from EA TGN M2):

 $Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular \ weight(g)}{molar \ volume(l) \ at \ a \ given \ temperature}$

molar volume at 273K = 22.4 litres

When Converting TOC

 $Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular \ weight of \ carbonin \ span \ gas(g)}{molar \ volume(l) \ at \ a \ given \ temperature}$

Page 22 of 25

Calculation of Uncertainty Estimates - Manual Monitoring Techniques

$$C_{m} = \frac{Q_{m}}{V_{std}}$$
$$V_{std} = V_{T.p} \times \frac{T_{std}}{T} \times \frac{p}{P_{std}}$$

Where:

C _m	=	the measured concentration	in	mg/m ³
Q _m	=	mass concentration collected in absorber solution and filter	in	mg
V _s	=	the volume of the sample solution	in	I
V _{std}	=	volume sampled at standard conditions	in	m³
T _m	=	mean temperature of gas meter	in	К
T _{std}	=	standard temperature	=	273K
p=prel+Patm	=	absolute pressure = gas meter pressure + atmospheric pressure	in	kPa
P _{std}	=	standard pressure	=	101.325 kPa
V _{T.p}	=	volume sampled as indicated by the gas meter	in	m ³

Expression for calculation of the combined uncertainty of the measured concentration

$$\frac{u^2(C_m)}{(C_m)^2} = \frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{std})}{(V_{std})^2}$$

Expression for calculation of the combined uncertainty of the gas volume

$$V_{std} = V_{T.p} \times \frac{T_{std}}{T_m} \times \frac{p}{P_{std}}$$

Assuming that uncertainties associated with the standard quantities T_{std} and P_{std} are negliable Expression for calculation of the combined uncertainty of the measured concentration

$$\frac{u^2(C_m)}{(C_m)^2} = \frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2}$$

$$u(C_m) = \sqrt{\left(\frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2}\right)} \times (C_m)^2$$

Overall expanded uncertainty (k = 2)

$$U(C_m) = u(C_m) \times k$$

Uncertainty of the measured concentration at oxygen reference concentration

$$u(C_{m,O_{2,ref}}) = \sqrt{\left(\frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2} + \frac{u^2(O_{2,meas,dry})}{(21 - O_{2,meas,dry})^2}\right) \times (C_{m,O_2,ref})^2}$$

Where:

u(Cm,O _{2,ref)}	=	uncertainty associated with the mass concentration at O ₂ reference concentration	in	mg/m ³
		concentration		
Cm,O _{2,ref}	=	mass concentration at O ₂ reference concentration	in	mg/m ³
O _{2,meas}	=	O ₂ measured concentration	in	% volume
u((O _{2,meas)dry)}	=	uncertainty associated to the measured O2 concentration	in	% (relative to $O_{2 \text{ meas}}$)

Page 23 of 25

APPENDIX 4

Uncertainty Estimate For The Measurement Of Total Particulate Matter BS EN 13284 - 1

Total Particulate Matter Test 1

Symbol	Mass concentration of TPM	Units	1				
Cm	1.11	mg/m ³		Filter		-0.18	mg
Cm at O2 ref	N/A	mg/m ³		Washings		0.50	mg
			•				
Symbol	Reference Oxygen	Units		Symbol	Daily em	ission limit value	Units
02, ref (0=No Correction)	0	%		DELV		20.0	mg/m ³
	Mass of Particulate						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(calBal)	Calibration	0.1180	mg	Normal	2	1	0.0590
u(repBal)	Repeatability Filter	0.0110	mg	Normal	1	2	0.0220
u(repBal)	Repeatability Washings	0.0300	mg	Normal	1	2	0.0600
u(driftBal)	Drift	0.0312	mg	Rectangular	$\sqrt{3}$	1	0.0180
u(resBal)	Resolution	0.0050	mg	Rectangular	$\sqrt{3}$	1	0.0029
u(aceBal)	Residual acetone	0.0400	mg	Normal	2	1	0.0200
u(buoBal)	Air buoyancy	0.0015	mg	Normal	1	1	0.0015
u(mass)	Combined Uncertainty	-		Normal	-	-	0.0911
u (mass)/mass	Relatve	0.760	mg	-	-	-	0.0822
						u (mass) ² /mass ²	0.006755
U(Wm)	Expanded Combined Weighing	Uncertainty	As Percent	tage of DELV k=2	±	0.91	%
0(1111)		g encontainty .			÷	0.01	70
	Volume of sampled gas						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(calV _{T.p})	Calibration	0.0034	m ³	Normal	2	1	0.0017
u(repV _{T.p})	Repeatability	0.0003	m ³	Normal	1	1	0.0003
u (driftV _{T.p})	Drift	0.0019	m ³	Rectangular	$\sqrt{3}$	1	0.0011
u(resV _{T.p})	Resolution	0.0002	m ³	Rectangular	$\sqrt{3}$	1	0.0001
u(V _{T.p})	Combined Uncertainty	-	-	Normal	-	-	0.0020
u (V _{T.p})/V _{T.p}	Relatve	0.686	m ³	-	-	-	0.0030
	Temperature of the DGM					u(Vm) ² /Vm ²	0.000009
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	сі	Ui
u(calTi _m)	Calibration	1.0	K	Normal	2	1	0.5000
u(calTc _m)	Calibration	1.0	К	Normal	2	1	0.5000
u(resT _m)	Resolution	0.1	К	Rectangular	$\sqrt{3}$	1	0.0577
u(driftT _m)	Drift	1.0	K	Rectangular	$\sqrt{3}$	1	0.5774
u(T _m)	Combined Uncertainty	-	-	Normal	-	-	0.9147
u(T _m)/Tm	Relatve	290.0	K	Normal	-	-	0.0032
						$u(\text{Tm})^2/\text{Tm}^2$	0.000010
O: male al	Atmospheric Pressure	Value	Linite	Dash shilita Distribution	Distant	-1	11
Symbol u(P _{atm})	Source of Uncertainty Metrological Office	Value 300	Units Pa	Probability Distribution Normal	Divisor	<i>ci</i> 1	Ui 173
u (P _{atm})	Combined Uncertainty		га -	Normal	√3	-	173
$u(P_{atm})/P$	Relatve	98900	-	Normal	-	-	0.0018
Citili/					r	$u(P_{atm})^2/P^2$	0.000003
	Relative DGM Pressure					(unit	
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u (P _{rel})	DGM Pressure	40	Pa	Normal	1	1	40
u (P _{rel})	Combined Uncertainty	-	-	Normal	-	-	40
u(P _{rel})/P	Measured pressure	99229	-	-	-	-	0.0004
						u (Prel) ² /P ²	0.000002
Symbol	Oxygen reference concentration Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u((O ₂ ,meas)dry)rel	Measurement of oxygen	N/A	%	Normal	1	1	N/A
- ((-2)	Uncertainty of oxygen correction	-	-	-	-	-	N/A
	Measured Oxygen	N/A	%			u (Orel) ² /O ²	N/A
Measurement uncertainty							
u(Cm)	Combined Standard Uncertainty				±	0.13	mg/m ³
u(Cm) at ref O ₂	Combined Standard Uncertainty				±	N/A	mg/m ³
	essed with a level of confidence of 95%				-	0.00	, 2
	Expanded Combined Uncertainty	k=2			±	0.26	mg/m ³
U(Cm,rel) U(Cm,rel,ELV)	Expanded Combined Uncertainty Expanded Combined Uncertainty	k=2 k=2			±	23.3 1.3	%
O(OIII,ICI,ELV)		n = ∠	1		±	1.3	70
Expanded uncertainty at or	kygen reference conditions expressed w	/ith a level of a	confidence	of 95%, k=2			
U(Cm) at ref O ₂	Expanded Combined Uncertainty	k=2		,	±	N/A	mg/m ³
LI(Cm_) at ref 0	Expanded Combined Uncertainty	k - 2	1			NI/A	0/

$U(Cm)$ at ref O_2	Expanded Combined Uncertainty	K = 2	±	N/A	mg/m°
U(Cm _{rel}) at ref O ₂	Expanded Combined Uncertainty	k = 2	±	N/A	%
U(Cm,rel,ELV) at ref O ₂	Expanded Combined Uncertainty	k = 2	±	N/A	%

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor (k = 2), providing a level of confidence of approximately 95% The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Uncertainty Estimate For The Measurement Of Heavy Metals BS EN 14385 - Lead

Symbol	Total mass concentration of Lead	Units					
Cm	0.00943	mg/m ³					
Cm at O2 ref	N/A	mg/m ³					
	Mass of heavy metals in filter digest						
		Qmf (mg)	LODmf	u(Qmf) % (k = 2)	u(Qmf)/Qmf	u(Qmf)2/Qmf2	
	Lead (Pb)	4.900	0.500	23.000	0.115	0.013	
	Concentration of heavy metals absor	ption solution	•	•			
		Qm (mg/l)	LODm	u(Qm) % (k = 2)	u(Qm)/Qm	u(Qm)2/Qm2	
	Lead (Pb)	4.800	0.300	20.500	0.103	0.011	
	Volume of sampled gas		•				
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
(calVT.p)	Calibration	0.0028	m3	Normal	1.000	1.000	0.003
u(driftVT.p)	Drift	0.0027	m3	Rectangular	$\sqrt{3}$	1.000	0.002
(resVT.p)	Resolution	0.0002	m3	Rectangular	$\sqrt{3}$	1.000	0.000
(VT.p)	Combined Uncertainty	-	-	Normal	-	-	0.003
i(VT.p)/VT.p	Relative uncertainty	0.668	m3	-	-	-	0.005
		· · · · · · · · · · · · · · · · · · ·	•	·		u(Vm)2/Vm2	0.00002
	Temperature of the DGM						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(calTim)	Calibration	1.0	K	Normal	2.000	1.000	0.500
u(calTcm)	Calibration	1.0	К	Normal	2.000	1.000	0.500
u(resTm)	Resolution	0.5	K	Rectangular	$\sqrt{3}$	1.000	0.289
u(Tm)	Combined Uncertainty	-	-	Normal	-	-	0.764
u(Tm)/Tm	Relative uncertainty	288	К	Normal	-	-	0.003
	,		•			u(Tm)2/Tm2	0.00000
	Atmospheric Pressure						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(Patm)	Metrological Office	300	Pa	Normal	1.000	1.000	300
u(Patm)	Combined Uncertainty	-	-	Normal	-	-	300
u(Patm)/P	Relative uncertainty	98900	-	Normal	-		0.003
a(r atti)/r		00000		Hornia		u(Patm)2/P2	0.00000
	Relative DGM Pressure					u(i u(ii)2/i 2	0.00000
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
J(Prel)	Manometer	40	Pa	Normal	1.000	1.000	40.000
J(Prel)	Combined Uncertainty	-	-	Normal	-	-	40.000
u(Prel)/P	Relative uncertainty	99221	-	Normal	-		0.0004
	Relative uncertainty	33221	-	Normai		u(Prel)2/P2	0.00000
	Volume (mass) of Absorption Solution	n				u(1101)2/12	0.000000
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
J(repvs)	Repeatability	0.13	g (ml)	Normal	1.000	1.000	0.130
u(calvs)	Calibration (Tare)	0.13	g (ml)	Rectangular	1.000	1.000	0.130
u(drvs)	Drift	0.10	g (ml)	Rectangular	1.000	1.000	0.100
u(resvs)	Resolution	0.05	g (ml)	Rectangular	√3	1.000	0.029
u(vs)	Combined Uncertainty	-	g (IIII) -	itectariyular	N 3	1.000	0.029
J(VS)/VS	Relative uncertainty	251	-	Normal	-	+ _ +	0.0008
1(03)/03	realize uncertainly	201	1 -	noma	-	- u(vs)2/vs2	0.00000
						u(v5)2/v52	0.00000
ı(Cm)rel	Overall Combined Uncertainty	mg/m2	Total Lead				0.0015
	Overall Complined Oncertainty	mg/m3	I Utal Lead			±	0.0015
I/Cm)rol	Expanded Combined Upportainty	ma/m2	Total Load	1.	- 2	. 1	0.0000
J(Cm)rel	Expanded Combined Uncertainty	mg/m3 % of ELV	Total Lead		x = 2	±	0.0029
J(Cm,rel)	Expanded Combined Uncertainty	% OF ELV	Total Lead	k	x = 2	±	0.1
(0			Tatal				
	2 Expanded Combined Uncertainty	mg/m3	Total Lead		x = 2	±	N/A
J(Cm,rel)	Expanded Combined Uncertainty	% of ELV	Total Lead		x = 2	±	N/A

providing a level of confidence of approximately 95%.

The uncertainty evaluation has been carried out in accordance with UKAS requirements.